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1 Polynomials and Divisibility

1.1 Polynomial division with remainder

We start with some results you should already know.

Theorem 1.1. Suppose f, g are polynomials in R[x], where R is a commutative ring.
Also suppose that f has leading coefficient 1, so f(x) = xn + an−1x

n−1 + · · · + a0. Then
g(x) = f(x)q(x) + r(x), where deg(r) < deg(f).

Corollary 1.1. If K is a field, K[x] is a Euclidean domain.

Proof. We can make the leading coefficient of any polynomial 1 by multiplying by a unit.
Then apply the theorem.

Corollary 1.2. If K is a field, K[x] is a principal ideal domain.

Proof. All Euclidean domains are PIDs.

Corollary 1.3. If K is a field, K[x] is a unique factorization domain.

Proof. All PIDs are UFDs.

Example 1.1. How can we find the prime elements of F2[x], where F2 = Z/2Z, the field
with 2 elements? Recall the sieve of Eratosthenes1. List all numbers > 1, identify the
smallest number as prime, and cross out all multiples of it.

2, 3, �4, 5, �6, 7, �8, 9,��10, . . .

Then, identify the first non-crossed out number as prime, and cross out all multiples of it.

2, 3, �4, 5, �6, 7, �8, �9,��10, . . .

1Erathosthenes was the first person to accurately calculate the circumference of the Earth.
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If we repeat this process, we can find all the prime numbers.
For F2[x], we list all elements (other than 0 or units) in order of degree.

x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1, . . .

Cross out all multiples of x.

x, x+ 1,��x
2, x2 + 1,���

�
x2 + x, x2 + x+ 1, . . .

The next element, x+1, is prime, so we cross out multiples of it. Note that x2+1 = (x+1)2

in F2[x].

x, x+ 1,��x
2,���

�
x2 + 1,���

�
x2 + x, x2 + x+ 1, . . .

The polynomials not divisible by x and x+ 1 are

x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1, x4 + x+ 1,((((
((

x4 + x2 + 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1,

and we can continue the process.

Proposition 1.1. Suppose a polynomial f ∈ R[x] has a root a (f(a) = 0). Then f(x) =
g(x)(x− a) for some g.

Proof. Apply division to get that f(x) = g(x)(x − a) + r. We have deg(r) < 1, so r is
constant. Put x = a to get f(a) = g(a)(a− a) + r = r, so r = 0.

Corollary 1.4. A polynomial f ∈ R[x] of degree n over an integral domain R has ≤ n
roots.

Proof. If a1, . . . , ak are roots, then f(x) = (x−a1) · · · (x−ak)g(x), so k ≤ n. If the product
is 0, then so is some factor (x− ai) because R is an integral domain.

Example 1.2. Let R = Z/8Z, which is not an integral domain. Let f(x) = x2 − 1, which
has degree 2. Then f(x) has 4 roots: 1, 3, 5, and 7.

Example 1.3. Let R be the quaternions (this is noncommutative), and look at f(x) =
x2 + 1. Then f has roots ±i,±j,±k, and roots ai + bj + ck for real a, b, c that satisfy
a2 + b2 + c2 = 1. This is an uncountable number of roots!

1.2 An application to field theory

We first prove a lemma.

Lemma 1.1. Any abelian group G with ≤ n elements of order n (∀n ≥ 1) is cyclic.

Proof. Recall that G ∼= Z/pn1
1 Z × Z/pn2

2 Z × · · · . Suppose that p1 = p2; then G has p2

elements x with xp = 1 (since G contains Z/pZ × Z/pZ). This is impossible, so all pi are
distinct. Then G is cyclic by the Chinese remainder theorem (Z/mZ× Z/nZ ∼= Z/mnZ if
m,n are coprime).
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Proposition 1.2. The group (Z/pZ)∗ of units mod p is cyclic if p is prime.

Proof. Since p is prime, Z/pZ is a field. So any polynomial in R[x] of degree n has ≤ n
roots. So xn − 1 has ≤ n roots for any n ≥ 1. Then G has ≤ n elements x with xn = 1
(for n ≥ 1). Using the lemma finishes off the proof.

Example 1.4. This need not hold if p is not prime. (Z/12Z)∗ ∼= (Z/4Z)∗ × (Z/3Z)∗, and
these are both cyclic of order 2.

Definition 1.1. A generator of (Z/pZ)∗ is called a primitive root.

We have shown that primitive roots always exist when p is prime.

Example 1.5. Let’s find a primitive root of p = 23. The element should have order 22.
Check the elements −1, 1, 2, 3, 4, 5. We find that 5 is the primitive root because 52, 511 6≡ 1
(mod 23).

The same argument shows that the following is true.

Theorem 1.2. If F is a field, any finite subgroup of F ∗ is cyclic.

Example 1.6. Let F = C, and take the subgroup of 8th roots of unity. This has primitive
root e2iπ/8.

This also gives us the following corollary.

Corollary 1.5. If F is any finite field, then F ∗ is cyclic.

1.3 Unique factorization in polynomial rings

We want to show that Z[x] is a UFD, and we know that Z[x] ⊆ Q[x], which is a UFD
because Q is a field. We cannot do this as we usually do, because Z[x] is not a Euclidean
domain or a PID. For example, (2, x) is a non-principal ideal. So we use the fact that Q[x]
is a UFD.

Definition 1.2. Let f ∈ Q[x]. The content c(f) is defined as follows: Suppose f(x) =
anx

n + · · · + a0. For each prime p, an = pmnbn, an−1 = pmn−1bn−1, . . . with mi ∈ Z and
bi not having any factors of p in the numerator or denominator. Let c(f) = pmin(mi) × b,
where b is some number with no factors of p.

Example 1.7. Let f(x) = (2/3)x2 + 4. Then c(f) = 2/3.

Proposition 1.3. Z[x] is a unique factorization domain.
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Proof. The key point of the proof is that c(fg) = c(f)c(g). We may assume that c(f) =
c(g) = 1; otherwise, we multiply f and g by constants to make this so. We want to show
that c(fg) = 1. We know that f has integer coefficients, so c(f) ∈ Z. Suppose p is any
prime in Z; we show that p does not divide c(fg).

Since c(f) = c(g) = 1, p does not divide all coefficients of f or all the coefficients of g.
So f = anx

n + · · ·+ aix
i + · · ·+ a0 and g = bmx

m + · · ·+ bjx
j + · · ·+ b0 where i and j are

the least indices such that ai and bj are not divisible by p. So the coefficient of xi+j in fg
is

a0bi+j + a1bi+j−1 + a2bi+j−2 + · · ·+ aibj + · · ·+ ai+j−1b1 + ai+jb0,

which has all terms except aibj divisible by p. This means that the coefficient of xi+j in
fg is not divisible by p. This is true for any prime p, so c(fg) = 1.

We sketch the rest of the proof. The main point is that we need to show that irre-
ducible elements are prime. Recall that irreducible elements are such that f 6= gh with
deg(g),deg(h) < deg(f); prime elements are such that if f divides g, h, then f divides g or
h.

The irreducibles of Z[x] are the primes 2, 3, 5, 7, . . . ∈ Z and the polynomials f(x) of
degree > 1 with c(f) = 1.

We leave the following two statements as exercises:

1. These are all the irreducibles of Z[x].

2. Any element of Z[x] is a product of irreducibles.

If deg(f) = 0, then f = p is prime in Z. If f divides gh, this means that c(gh) is
divisible by p. So c(g) or c(h) is fivisible by p (since c(gh) = c(g)c(h). So p divides gh.
The case of deg(f) > 0 is similar and left as an exercise.

We have really proved the following them.

Theorem 1.3. If R is a UFD, then so is R[x].

Proof. Perform the same proof but with a few modifications. First, c(f) is now only
defined up to multiplication by a unit. Also, irreducibles of R[x] are either irreducibles of
R (deg = 0) or irreducibles of K[x] with content 1, where K is the quotient field of R.

Corollary 1.6. Z[x1, . . . , xn] is a unique factorization domain.2

Corollary 1.7. If K is a field, K[x1, . . . , xn] is a unique factorization domain.

Proof. These two have the same proof: induction on the number of variables.

2In fact, Z[x1, x2, . . . ] in infinitely many variables is a field, but we will not prove that here.
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1.4 Irreducibility tests in Z[x] (or Q[x])

Given f ∈ Z[x], how do we factor f into irreducibles?

Example 1.8. Here is an algorithm, due to Kronecker:
Suppose that f − gh. We can assume g, h ∈ Z[x]. Then f(n) = g(n)h(n) for any

n ∈ Z. So we factor f(0), f(1), . . . , f(m), where m = deg(f). Then g(0) divides f(0)
or g(1) divides f(1), (and so on), so there are only a finite number of possibilities for
g(0), . . . , g(m). But deg(g) ≤ m, so g is determined by g(0), . . . , g(m).

Kronecker’s algorithm is pretty slow. There are faster algorithms.

Example 1.9. The LLL algorithm3 is fast but not necessarily precise. We can write
f = af1f2 · · · fn, where fi is irreducible with degree > 0 and a ∈ Z. We can do this in
polynomial time, but to find a, we must factor an integer, which may not be possible in
polynomial time.

To test for reducibility, we can use reduction mod p: If f(x) = g(x)h(x), then f(x) =
g(x)h(x) (mod p) for any prime p.

Example 1.10. Is 9x4 + 6x3 + 26x2 + 13x+ 3 irreducible? Yes. It is x4 + x+ 1 (mod 2),
and we saw that this was irreducible (mod 2).

Example 1.11. Let’s test if x4 − x2 + 3x+ 1 is irreducible.

(mod 2) : x4 + x2 + x+ 1 = (x+ 1)(x3 + x2 + 1),

which are both irreducible (mod 2).

(mod 3) : x4 − x2 + 1 = (x2 + 1)2.

which is also irreducible (mod 3).
Combine these results. The first one says that the only possible factorization is a

degree 1 polynomial times a degree 3 polynomial. The second says that the only possible
factorization is into 2 degree 2 polynomials. So the polynomial must be irreducible.

Theorem 1.4 (Eisenstein). Suppose f(x) has the following properties:

1. The leading coefficient is 1.

2. All other coefficients are divisible by p.

3. The constant term is not divisible by p2.

Then f is irreducible.

3This stands for Lenstra, Lenstra, and Lovasz.
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We will not prove this right now. First, let’s see some examples.

Example 1.12. The polynomial x5 − 4x+ 2 is irreducible by Eisenstein’s criterion.

Example 1.13. Look at the p-th roots of 1. These are the roots of the polynomial
xp − 1 = (x − 1)(xp−1 + xp−2 + · · · + x + 1). We want to show that the latter term is
irreducible by Eisenstein’s criterion. We need a trick to make this work. Put z = x − 1.
Then

xp−1 + · · ·+ x+ 1 =
xp − 1

x− 1
=

(z + 1)p − 1

z

=
(zp + pzp−1 + p(p−1)

2 zp−2 + · · ·+ pz + 1)− 1

z
= zp−1 + pzp−2 + · · ·+ p,

so Eisenstein applies, and zp−1 + pzp−2 + · · ·+ p is irreducible. So xp−1 +xp−2 + · · ·+x+ 1
is irreducible, as desired.

Why does this work? The prime p is totally ramified in Z[ζ], where Zp = 1. We have
that p factorizes in Z[ζ] as (1− ζ)p−1u, where u is a unit.
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